TARGET

Turn off the light when not in use, Keep the future bright. The electric bill won't give you a fright if you remember to turn off the light. Like Money saved is Money earned, Power Saved is Power Generated.

Translate

Popular Posts

Tuesday 13 August 2019

Petersen Coils

Petersen Coils:
§  A Petersen Coil is connected between the neutral point of the system and earth, and is rated so that the capacitive current in the earth fault is compensated by an inductive current passed by the Petersen Coil. A small residual current will remain, but this is so small that any arc between the faulted phase and earth will not be maintained and the fault will extinguish. Minor earth faults such as a broken pin insulator, could be held on the system without the supply being interrupted. Transient faults would not result in supply interruptions.
§  Although the standard ‘Peterson coil’ does not compensate the entire earth fault current in a network due to the presence of resistive losses in the lines and coil, it is now possible to apply ‘residual current compensation’ by injecting an additional 180° out of phase current into the neutral via the Peterson coil. The fault current is thereby reduced to practically zero. Such systems are known as ‘Resonant earthing with residual compensation’, and can be considered as a special case of reactive earthing.
§  Resonant earthing can reduce EPR to a safe level. This is because the Petersen coil can often effectively act as a high impedance NER, which will substantially reduce any earth fault currents, and hence also any corresponding EPR hazards (e.g. touch voltages, step voltages and transferred voltages, including any EPR hazards impressed onto nearby telecommunication networks).

§  Advantages:
1.     Small reactive earth fault current independent of the phase to earth capacitance of the system.
2.     Enables high impedance fault detection.

§  Disadvantages:
1.     Risk of extensive active earth fault losses, High costs associated

No comments:

Post a Comment